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Part I. Forced Harmonic Vibrations

Introduction

In the previous lecture, we discuss the free
response of SDOF systems

In this lecture, the main thing to be addressed
Is the behavior of SDOF systems subjected
to a harmonic excitation

o Response

o Vibration isolation

a Responance
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| Important Concept of the Previous

Lecture
Mass-spring-damper system
Newton’s method

o Free body diagrams

Energy method
o Rayleigh’s method

Natural frequency
Damping ratio
Critical damping

| Engineering Problem Statement
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Engineering/Vibration Model

!

mx + ¢x + kx = F(t)
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Engineering Problem (E.q., Earthquake) Vibration/Mathematical Model
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Introduction

Forced vibration is the one in which external
energy is added to the vibrating system.

The amplitude of a forced-undamped vibration
would increase over time until the mechanism
was destroyed.

The amplitude of a forced-damped vibration will

settle to some value where the energy loss per
cycle is exactly balanced by the energy gained.

Model Development

mx + cx + kx = F(r)

[

+x

F(r)

£(r)
(a) (b) Free-body diagram




Typical Responses

x(%)

xp(t)

x(:)~xh(r)+xp(f)‘(\ A /- /\
IR

FIGURE 3.2 Homogenous, particular, and general solu-
tions of Eq. (3.1) for an underdamped case.

Important Concepts

Distinguish between o, and ®
o o, Natural frequency, characteristics of system itself
o o Driving frequency, determined by input force

Two types of responses
o The complete responses come from two contributions

o Transient response: will decade to zero as time
becomes large
Also known as homogeneous or complementary solutions (in
ODE)
o Steady state response: will dominate the system
behavior as time becomes large
Also known as particular solutions (in ODE)
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Part IL. 2 order ODEs w/ Forcing
Term

 General Mathematics Development (I)

mx + kx = F,cos wt
xp(t) = Cj cos w,t + C,sin wyt

xy(t) = X cos wt

x(t) = Cycos wyt + Cysin w,t + —Uizcos wt
k — mw
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 General Mathematics Development (1)

C1=XQ*

x(t) = (xo -

k — mw

X 1
wﬂ
Xp(f) = —X cos wt
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Solution for Under damped Systems

= Frequency response:

F(t) = Fycos wt

™ TN\
NZEEET

Fy

o]

xp(1) = X cos wr
0 : =
\/ 2 \

FIGURE 3.4 Harmonic response when
0 < afw, < 1.

in and out phase

F(1) = Fycos wt

N S\
¥ S

£y

xp(:) = — X cos wt

N,
NS

FIGURE 3.5 Harmonic response when
wiw, = 1.

In phase

Out phase
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Comparison of free and forced
response

Sum of two harmonic terms of different frequency

Free response has amplitude and phase effected by
forcing function

Our solution is not defined for ®, = @ because it
produces division by 0.

If forcing frequency is close to natural frequency the
amplitude of particular solution is very large

Solution for undamped systems

x(1)
| 4

16
(b)w%m
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Response for m=100 kg, k=1000 N/m, F=100 N, ® = o, +5
V,=0.1m/s and x,=-0.02 m.

0.05

Displacement (x)
o

-0.05

0 2 4 6 8 10
Time (sec)

Note the obvious presence of two harmonic signals

Go to code demo -

Solution for undamped system

Xg . COS Wf = COS Wyl
x(t) = xpcosw,t + —sinw,f + 8y ——

Wy | w \*
— ™

T /\ /\ Beating phenomenon
¢ \‘V f o~ o,
A S
Wy, ~e ‘-{ 27 ’k Fylm sin et
e, @ 2ew

x,(6)

w=w TG ANANAWY i A [\\?‘;:”ﬂ’
n 1;%; \V\U U/U,z ‘\J\\U U /\J,, \_{\\k
T o ’ |
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What happens when o is near ®,?

When the drive frequency and natural 2 f @ — @

: 0 H n
frequency are close a beating > 3 Sln( tJ
phenomena occurs 2 2

1
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3 Larger
< amplitude
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Time (sec)
19
What happens when ® is ® 7
X, (t) =tX sin(at)
substitute into eq. and solve for X grows with out bound
f
X = o X(t) = A sinawt + A, cos ot + —2-t sin(amt)
20 20

-

When the drive
frequency and natural
frequency are the
same the amplitude
of the vibration grows
without bounds. This
is known as a
resonance condition

N

Displacement (x)

0 5 10 15 20 25 30
Time (sec)

20
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Resonance (FLf)

The external driving frequency
matches one of the system
natural frequencies

21

Part ITI. Damped Responses

22
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‘ Mathematics (I)

mx + ¢x + kx = Fycos wt
Xp(t) = X cos (wt — ¢)
X[(k — mw?*) cos (wt — ¢) — cwsin (0t — ¢)] = F, cos wt

X[(k — mw?) cos ¢ + cwsin p] = F,
X[(k — maw®)sinp — cw cos ¢p] = 0

_ Fo
[k — mo?? + 2o

23

 Mathematics (1I)

Reference
F(1), x,(1)

F(r)
i ?\("p(f) / \\\ o |

i
£ s

X 1 _ 1
8y {I:l ] (i)z:lz [zgi 2}1/2 - 27+ @y
n w?‘l
w 3\
0=
— ¢ =tan! (w:) )2 = tan”! (1 Zfrrz)
1 - i
wn
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‘ Frequency Responses

Amplitude ratio: M
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As C grows
resonance moves r
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differentiating the
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| Phase plot

* Resonance occurs

at ¢ =m/2
« The phase changes 35
more rapidly when 3
the damping is
small 32‘5
» From low to high % 2
values of r the 815 A
phase always s ]
changes by 180° or /.{‘;...../I
n radians 05 i
0 gt o - T
0 0.5 1 15
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| Quality Factor and Bandwidth

X X 1
()= ()0

Bandwidth
| | ] :
R, 10 R, ©n
Half power points
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Phasor Representation of Vibration

Equations
Spring force, damping force, and inertia force
have 90-phase differences.
At resonance, if damping is small, X/F, can
be huge

sn
*
Y

(0) ww, <<1

() w/wy>>1

29

Geometric Approach

Position, velocity and acceleration phase shifted
each by n/2
Therefore write each as a vector
Compute X in terms of F, via vector addition
Im D C

caoX F,

KX (k-mo?)x B

kX cos(at —0)

C caoX
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Using vector addition on the diagram:

F2 = (k—ma’): X* + (cw)’ X?

XZJw—md}+@@2

At resonance:

0="
2

K

X=—

Cw

Rotating Unbalance

The effects of unbalance is a common problem in

vibrating systems.

Consider a one
dimensional system
with an unbalance
represented by an
eccentric mass, m,
with offset, e,
rotating at some
speed, w, as shown

ST TR 7T s,

FIGURE 3.2.1. Harmonic disturbing
force resulting from rotating unbalance.
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Rotating Unbalance

Equation of Motion

5

¥

(M-m)¥ +m—(x+esinmt) = —kx —cx

dt

.. X 21 .
MX+cx+kx = [mec.-)' )5111 ot
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FIGURE 3.2.2. Plot of Eqs. (3.24) and (3.2.5) for forced vibration with rotating unbalance.
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‘ Part IV. Engineering Examples

35

Failure of Tachoma Narrow Bridge

L
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Flutter of Airplanes

FLUTTER EXCITATION

37

Screws  Stationarycoils |
--n..___} ¥,

Holder PZT cantilever

38
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Part V. Vibration Isolation:
Introduction

39

Introduction

Vibration isolation is (perhaps) the most
important application of vibration course in
industry

Goals:

o Attenuate or isolate base vibration transmitted to
the work piece

o Attenuate the seismic damage on buildings
o Noise reduction

o Reducing motion —induced vibration of flexible
structure during operation

40
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‘ Base Excitation

= Study the influence of base motion Y (force
or displacement) on the top mass X
o E.g., Y=floor motion, X=optical table

+5
+x T +x
1 sl
o .
k ¢ IWFY“W k(x—y) - 7)
f
Base

(a) (b)

41

‘ Base Excitation
mi+c(x—y)+k(x—y)=0

mx + cx + kx = ky + ¢y = kY sin ot + cwY cos ot
= Asin(wt — «)

YVI? + (co) .
) = [(k — ma?)? + (cw)z]m s O

x,(t) = X sin (wt — ¢)

X k? + (cw)? et 1+ (2¢r) 12
Y | (k- mo??+ (co)?| | Q-+ @2Lr)?

— R mew’ _ o 2§r3
¢ = tan |:k(k - mw®) + (wc)zj an |:1 + @42 - ])rz:l

42
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e

Base Excitation

Transmissibility = X/Y
o Attenuation ratio of the base motion through the system
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FIGURE 3.6.1. Disturbing force transmitted through springs and damper.
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Force Transmissibility

Force Transmissibility Ft/Fo
T T T

T
—=~ zeta= 02 |
T zeta= 05 |;
— zeta= 1

|FtiFo| log scale
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Important Insights

Base vibration can be attenuated when r>v2

Since r=w/mn, this implies that a smaller ®n can
achieve a better isolation range

However, since on = V(k/m), a smaller on = a
smaller k

o Problem of DC disturbance rejection

o This is also the reason why your optical table is quite
compliant if you try to apply a low frequency load

May need to use active vibration for low
frequency disturbance

46
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Passive Damper
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‘ Vibration Measurement Instruments

x(t) E
7% m >-§
K |-:-,ic E | ()
Ey 38

ARHTEHETRTERRTRRRRRTERERRERRRRRGY

FIGURE 10.9 Seismic instrument.
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‘ Vibration Measurement Instruments

= Goal: measure the status of y by means of x
= Vibrometers:
o Measure y by x
= Accelerometers:
o Measure Y by x

y

e, T
mx = —c(x —y) — k(x — y)

z=(x—y)

g /ﬁ

mi +c: +kz = mo?Y sin wt

2023/3/14
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‘ Vibrometers: High Frequency Devices
mw?Y Y(wi.)
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Frequency rotio u’%

‘ Accelerometers: Low Frequency Devices

= Using Z/»?Y as the measurement index
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Working Range of Vibration

Measurement Devices

The flat regime of their FRF

For vibrometer in previous case, /o, > 4

o This implies that a smaller o, is desired

o Soft structure

For accelerometer in previous case, o/o, < 0.1
o This implies that a larger o, is desired

o Stiff structure

53

Part VI. Frequency Response and
Resonance Behavior

2023/3/14
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Solution Domains

TIME DOMAIN

PARAMETER ESTIMATION

<a
FREQUENCY LAPLACE
DOMAIN DOMAIN
Introduction

Frequency responses functions (FRF) correlate

the behavior of vibration systems w.r.t. different

input signals

o Response magnitude and phase delay

o Equivalent to the Bode diagrams in control
engineering

a Transfer functions

Major information obtained from FRF

o Sensitivity, bandwidth, decay slope, ...

2023/3/14
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Methods to Obtain FRF

Swept sine test

o Apply a single sine input F= Fysinot and obtain the
response X=Xsin(wt+d)

o Then plot the magnitude plot (i.e., X/F, vs.0) and
phase plot (i..e, ¢ vS. ®)

o Change o and repeat the procedure to obtain
sufficient data

Impact test

o Apply an “impact” force

o Perform FFT to convert the obtained data to its
frequency contents

o Repeat and average

Resonance Behavior

The input and output has a 90° phase
difference

o Energy continuously feeds into the system after
each cycle

o Results larger vibration amplitude
o Bad for structural engineering
o Might be good for actuating system design

o Amplification ratio depends on the system
damping ratio

2023/3/14

29



‘ Instability Issues

FIGURE 3.28  Fluid flow past a cylinder.

Helical spoilers

(a)

FIGURE 3.30  Helical spoilers. (Photo courtesy of Bethlehem Steel Corporation).

59

‘ Part VII. Simple Problems

60
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‘ Problem 1. Plate support a pump o 3.1)

lcm /“\
Y | \]I v

AN

”] T A | |
I 250 cm i

FIGURE 3.9  Plate supporting an unbalanced pump.

A reciprocating pump, having a mass of 68 kg, is mounted at the middle of a steel plate of thickness
1 em, width 50 cm, and length 250 cm, clamped along two edges as shown in Fig. 3.9. During oper-
ation of the pump, the plate is subjected to a harmonic force, F(f) = 220 cos 62.832¢ N. Find the

amplitude of vibration of the plate.
61

Hroblem 2. Vehicle move on a rough road
(Rao 3.3) x(1)

Road surface

x(t)

t [ .

l (a)
k c

®
1_ [\U/\U/\ y(f) = Y sin @t
(b)

FIGURE 3.18  Vehicle moving over a rough road.

Figure 3.18 shows a simple model of a motor vehicle that can vibrate in the vertical direction while
traveling over a rough road. The vehicle has a mass of 1200 kg. The suspension system has a spring
constant of 400 kN/m and a damping ratio of { = 0.5. If the vehicle speed is 20 km/hr, determine
the displacement amplitude of the vehicle. The road surface varies sinusoidally with an amplityde of
Y = 0.05m and a wavelength of 6 m.

2023/3/14
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‘Problem 3 Francis Water Turbine ®ao35)

.
Bearing —*

Shaft —*

Stator

Tail race
The schematic diagram of a Francis water turbine is shown in Fig. 3.20 in which water flows from
A into the blades B and down into the tail race C. The rotor has a mass of 250 kg and an unbalance
(me) of 5 kg-mm. The radial clearance between the rotor and the stator is 5 mm. The turbine oper-
ates in the speed range 600 to 6000 rpm. The steel shaft carrying the rotor can be assumed to be

clamped at the bearings. Determine the diameter of the shaft so that the rotor is always clear of the
stator at all the operating speeds of the turbine. Assume damping to be negligible. .

‘ Part VIII.  Youtube Demonstrations

64
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